

High-Silica Fiberglass Yarn for Thermal and Electrical Insulation in Aerospace and UAV Applications

Abstract

This technical article explores the application of high-silica fiberglass yarn (HSF, $\text{SiO}_2 \geq 96\%$) as a critical material for thermal and electrical insulation in aerospace and unmanned aerial vehicle (UAV) systems. The analysis focuses on non-propulsive components, specifically power compartments and internal/external structural insulation. A comparative assessment against aramid and carbon fibers is presented, evaluating key parameters such as operational temperature, dielectric strength, mechanical strength, density, and cost-effectiveness. Material selection matrices are proposed for various operational scenarios.

Power compartments and internal/external structural insulation of aerial vehicle

1. Introduction

Modern aerospace and UAV design demands lightweight, reliable, and high-performance insulation materials to protect sensitive avionics,

battery systems, and structural components from extreme thermal and electrical environments. High-silica fiberglass yarn emerges as a versatile candidate, balancing excellent thermal resistance with inherent electrical insulation properties.

2. Application Scenarios and Operational Requirements

2.1 Power Compartment/Battery Bay Insulation:

Primary Function: Contain thermal runaway events, prevent heat propagation to adjacent structures, and provide electrical isolation.

Key Requirements: High temperature resistance (short-term exposure up to 1000-1200°C), excellent dielectric strength, low thermal conductivity, and flame retardancy.

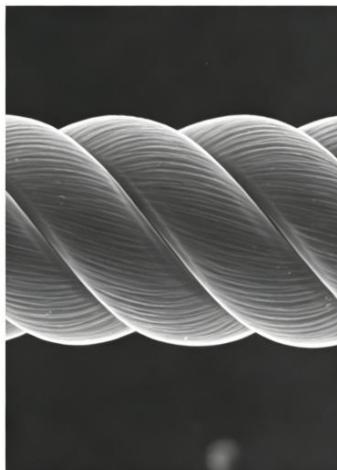
Operational Environment: Potential for rapid temperature spikes, presence of high-voltage components.

2.2 Internal Structural & Avionics Bay Insulation:

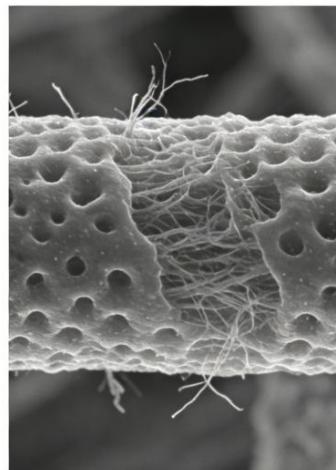
Primary Function: Shield flight control computers, wiring harnesses, and sensors from ambient heat (e.g., from skin friction, engine bay radiant heat).

Key Requirements: Continuous operating temperature resistance (~500-700°C), effective thermal barrier, vibration damping, and low out-gassing.

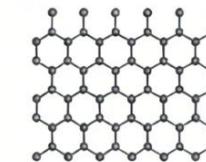
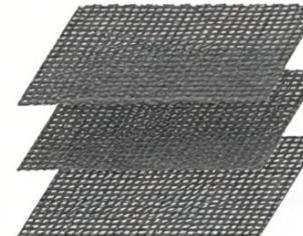
Operational Environment: Moderate but sustained temperatures, need for long-term reliability.


2.3 External Non-propulsive Insulation:

Primary Function: Protect composite air-frames from aerodynamic heating, exhaust plume impingement (for UAVs with rear-mounted engines), and lightning strike effects.


Key Requirements: Good mechanical abrasion resistance, weathering stability, combined thermal and electrical insulation, and adhesion to composites.

Operational Environment: Exposure to varying atmospheric conditions, UV radiation, and potential mechanical wear.



3. Material Performance Comparison

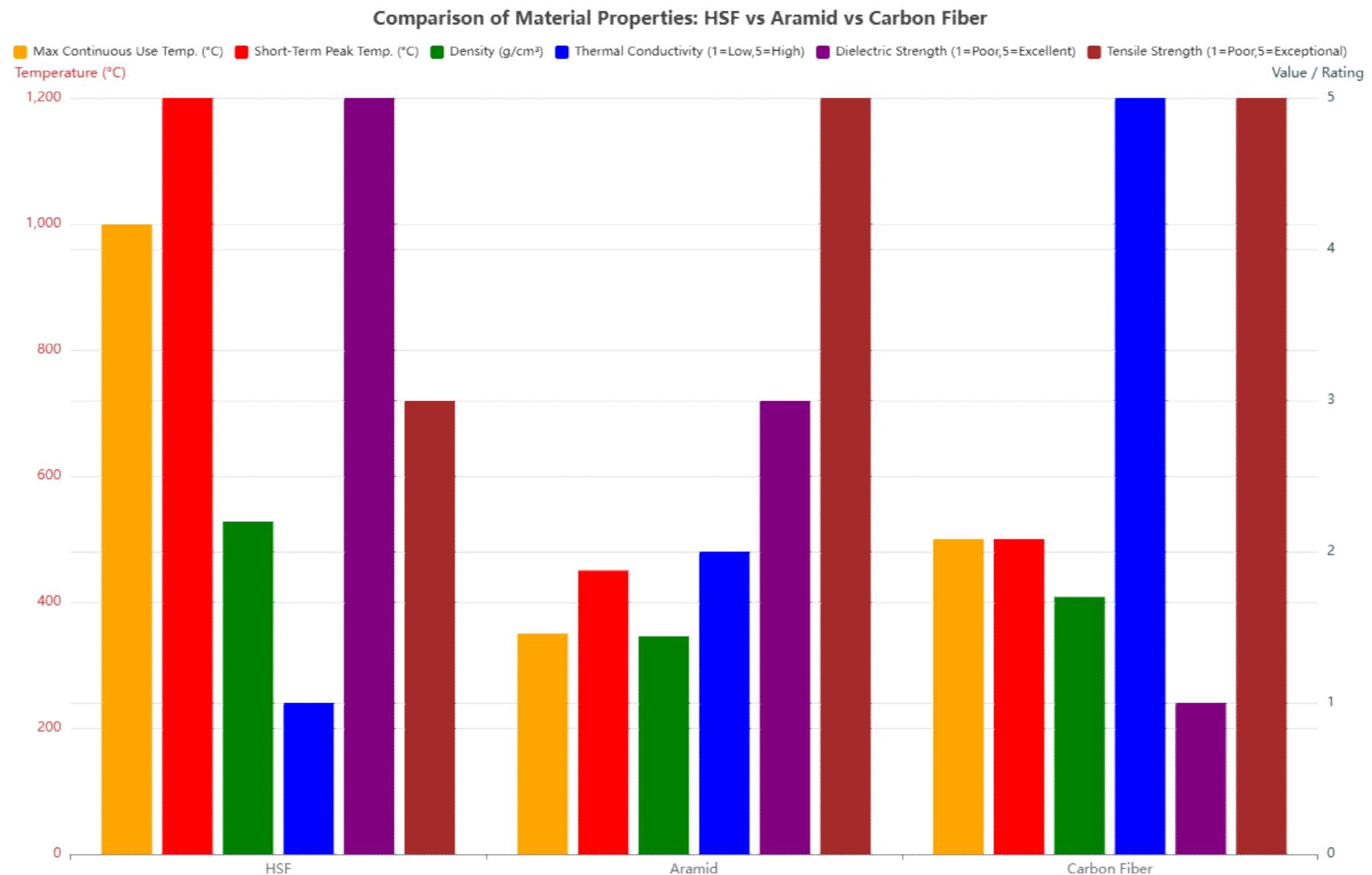
High silica glass fiber: Smooth fiber surface, high temperature resistant

Aramid fiber: Rough/fibrillated structure, good toughness

Carbon fiber: Regular graphite lattice, conductive

Micro structure of HSF yarn, Aramid fiber and Carbon fiber

The following table compares the fundamental properties of High-Silica Fiberglass (HSF), Aramid, and Carbon Fiber relevant to insulation applications.

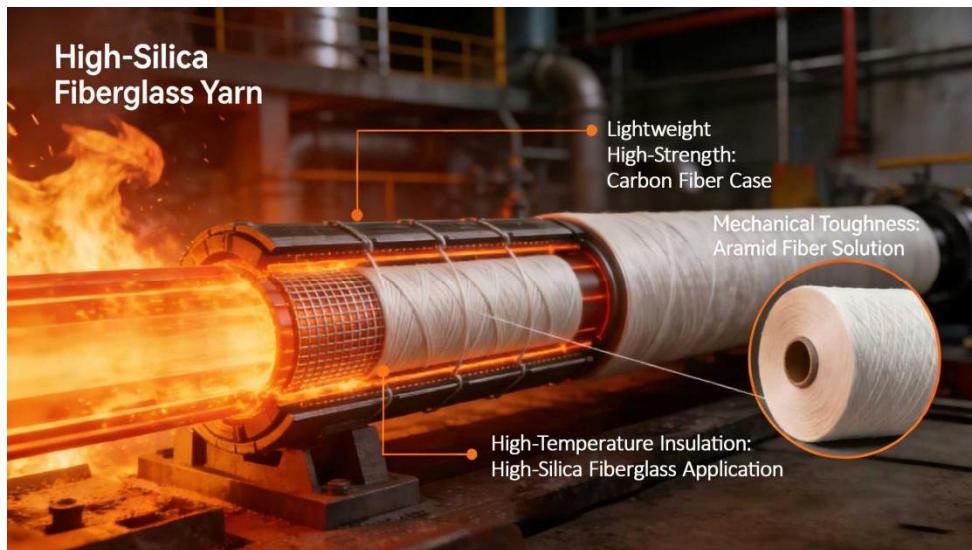


The fundamental properties of High-Silica Fiberglass (HSF), Aramid, and Carbon Fiber

Property	High-Silica Fiberglass (HSF)	Aramid (e.g., Kevlar®)	Carbon Fiber
Max Continuous Use Temp.	~1000° C	~250-350° C	~400-500° C (in inert atm.)
Short-Term Peak Temp.	Up to 1200° C	Degrades above 450° C	Oxidizes above 500° C
Dielectric Strength	Excellent (High Insulator)	Good	Conductive (Not an Insulator)
Tensile Strength	Good	Excellent	Exceptional
Density	~2.2 g/cm³	~1.44 g/cm³	~1.6-1.8 g/cm³
Thermal Conductivity	Very Low	Low	High (along fiber axis)
Primary Advantage	Best combined high-temp & electrical insulation	Best mechanical toughness & impact resistance	Best stiffness & strength-to-weight
Key Limitation	Brittle compared to aramids	Poor UV & high-temp stability	Electrically conductive, oxidizes at high temp

Remark: The data is based on Lab testing conditions, the adjustment shall be done as per application environment

Chart of HSF, Aramid fiber and Carbon fiber


4. Material Selection Strategy and Hybrid Solutions

Selection is driven by the primary threat (heat, electricity, impact) and specific location requirements.

Scenario A: High-Temperature Electrical Insulation (e.g., Power Busbars, Battery Module Separators)

Threat: High voltage + potential arc flash / thermal event.

Solution: HSF Alone. Its superior and stable dielectric strength at elevated temperatures is unmatched. Neither aramid (lower temp limit) nor carbon (conductive) are suitable as primary insulators here.

Scenario A: HSF as Primary High-Temp Electrical Insulator in Battery Compartment

HSF yarn application for thermal and electric insulation

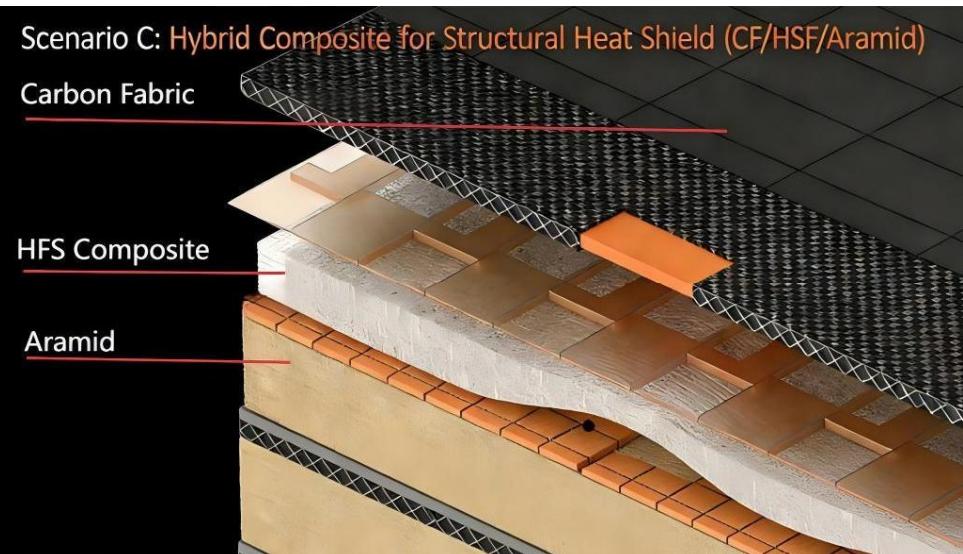
Scenario B: Impact-Resistant Thermal Barrier (e.g., Insulation near landing gear bays, access panels)

Threat: Mechanical abrasion/vibration + moderate heat.

Solution: Aramid Alone or Aramid/HSF Hybrid. Use aramid fabrics where toughness is paramount below 350°C. For higher temperatures, a hybrid fabric with an aramid base for strength and an HSF surface layer for thermal protection can be optimal.

Compatible Component List for Aramid Impact & Thermal Barrier

Component	Temperature Range	Primary Application	Structural Suggestion
Engine Nacelle / Pylon Thermal-Acoustic Insulation Liner	$\leq 250^{\circ} \text{ C}$	Impact resistance, thermal insulation, noise reduction	Aramid fabric + flame-retardant matrix, layered composite
Fuselage / Wing Leading Edge Bird Strike & Thermal Protection Layer	$\leq 200^{\circ} \text{ C}$	Impact resistance, anti-icing, thermal insulation	Aramid fabric sandwich, co-bonded/cocured with skin
Cabin Firewall / Thermal Barrier	$\leq 200^{\circ} \text{ C}$	Fire containment, thermal insulation, impact resistance	Aramid non-woven / fabric + flame-retardant adhesive film
Rocket Body Cryogenic & Impact Protection Layer	-196° C to 200° C	Cryogenic toughness, impact resistance, thermal insulation	Aramid fabric + cryogenic-compatible matrix



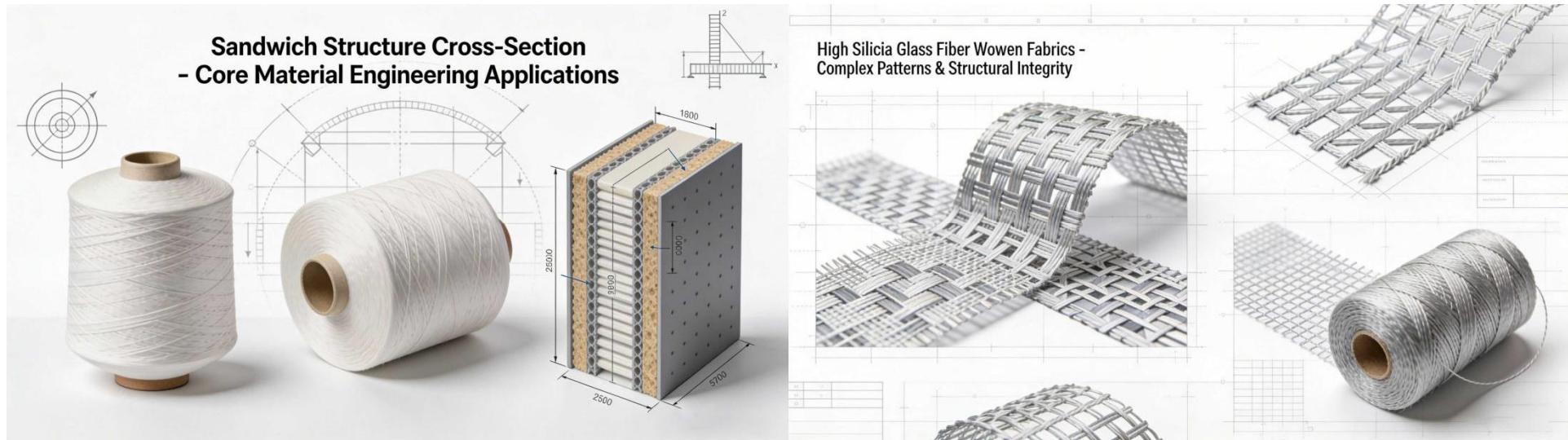
Aramid Impact-Resistant Thermal Barrier

Scenario C: Structural Heat Shield with Stiffness Requirement (e.g., External heat shield on a UAV pylon)

Threat: Aerodynamic heating + need for structural rigidity.

Solution: Carbon Fiber/HSF Composite. A laminate with carbon fiber providing structural stiffness and an HSF layer as the thermal barrier. This separates the load-bearing function from the insulation function efficiently. Note: An insulating layer must separate carbon from any electrical components.

Hybrid Composite of HSF/Aramid fiber/Carbon fiber


Scenario D: Lightweight General Thermal Blanket (e.g., Avionics bay wrap, wire loom protection)

Threat: Radiant and convective heat, need for flexibility and low mass.

Solution: HSF Alone. Offers the best balance of high-temperature capability, low thermal conductivity, and electrical safety in a lightweight, flexible fabric form.

5. Conclusion

High-silica fiberglass yarn is not a universal replacement for aramid or carbon fiber but a specialized material that excels in the niche where **high-temperature resistance and electrical insulation are simultaneously required**. In aerospace and UAV insulation design:

High silica yarn, fabric and composite

HSF is the **default choice for primary thermal-electrical insulation** in power systems and high-temperature zones.

Aramid is selected where **impact resistance and toughness** are critical at lower to moderate temperatures.

Carbon Fiber is integrated into **structural heat shields** where stiffness is a driver, but always paired with an insulating layer like HSF.

The future lies in engineered **hybrid composites** (e.g., HSF/aramid weaves, HSF as a core in carbon sandwich panels), which allow designers to tailor material systems to meet the multifaceted demands of next-generation aerospace vehicles, optimizing for weight, performance, and safety.

Technical Terminology Clarification: Silica Fiberglass vs. Silica Yarn

Silica Fiberglass vs. Silica Yarn: Material vs. Product Form

Comparison Dimension	Silica Fiberglass	Silica Yarn (High-Silica Yarn)
Core Definition	Base Material Category. Refers to any glass fiber with silica (SiO_2) as the main component (>50%).	Finished Product Form. Specifically refers to continuous yarn made from high-purity silica fibers ($\text{SiO}_2 \geq 96\%$) via twisting/plying processes.
Composition & Process	Broad composition range (e.g., E-glass: ~52-56% SiO_2 , C-glass: ~65%). Made by melting and drawing.	High-purity specific. Made by acid-leaching special glass fibers to remove metal oxides, boosting SiO_2 to 96%-99%+ , then spun into yarn.
Performance Focus	Properties vary by type: <ul style="list-style-type: none">• E-glass: General purpose, good insulation & strength.• C-glass: Acid-resistant.• S-glass: High strength/modulus.	Performance optimized for extreme conditions: <ul style="list-style-type: none">• Ultra-high temp resistance (1000° C+ continuous).• Minimal thermal conductivity (superior insulation).• Excellent dielectric strength.• High chemical stability (except HF/strong alkalis).
Physical Form	Primary forms: <ul style="list-style-type: none">• Continuous rovings• Chopped strands• Woven fabrics/mats (made from rovings)	Specific yarn form: <ul style="list-style-type: none">• Singles or plied yarns• Defined yarn count (Tex, Denier)• Ready for weaving, knitting, sewing

Comparison Dimension	Silica Fiberglass	Silica Yarn (High-Silica Yarn)
Primary Applications	Wide-ranging, as reinforcement/functional material: <ul style="list-style-type: none">• Composite reinforcement (FRP)• Insulation substrate• Filtration media• Building insulation wool	Focused on high-end insulation: <ul style="list-style-type: none">• High-temp industrial blankets/sleeves• Firefighting gear, curtains, blankets• Aerospace thermal protection• High-temp sealing/wrapping
Analogy	Like " Steel " – a broad material category with many grades.	Like " Stainless Steel Wire of a specific grade " – a finished product form for specific applications.

Key Takeaways:

HSF vs. Aramid/Carbon: HSF excels where **both extreme heat resistance and electrical insulation** are required simultaneously. It is not a direct replacement but a specialized solution.

Material vs. Product: "**Silica Fiberglass**" is the general material name. "**Silica Yarn**" (or "**High-Silica Fiberglass Yarn**") refers specifically to the high-purity, yarn-form product ready for demanding insulation applications. In aerospace contexts, the latter is typically the subject of discussion.

Note on UAV Terminology:

In this article, "**UAV (Unmanned Aerial Vehicle)**" is used as the standard technical term within the aerospace industry, emphasizing the vehicle as a complete system. Other common terms include "Unmanned Aircraft" (formal/regulatory) and "Drone" (general/public).

DEEPROTECT TECH. TEAM

<https://www.deepprotect.top>

Email: support@deepprotect.top

